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Abstract-h the present paper the existence of molecule clusters is assumed a priori, showing that the 
mean statistical mass of a cluster depends on the gas parameters of state, while the mean kinetic energy 
of clusters is proportional to the measured temperature, and the kinetic energy per unit of volume-to 
the measured gas pressure. The concept of temperature and pressure detectability has been introduced 
and an expression for the change-in-phase detectability factor derived. In addition, expressions for the 
saturation pressure and the mean number of molecules per cluster have been derived as functions of 
saturation temperature. Finally, a model of vaporization has been proposed and an expression for the 
limiting liquid superheat derived. The agreement of all these expressions with the experimental results 

proves to be almost perfect. 

NOMENCLATURE 

surface area [m’] ; 
constant of integration; 
specific heat [J/kg, K] ; 
change-in-phase detectability factor 

(reduced); 
critical detectability factor; 
total energy [J]; 

energy per unit of mass [J/kg] ; 
specific bond energy of cluster 
(per molecule) [J] ; 

i, i’, i”, enthalpy, of liquid,. of vapor [J/kg]; 

K, universal fluid constant, K = 6.765 kO.015; 

Ko, Kr, K2r constants in equations; 

k, Boltzmann’sconstant,k = 1.38. 10ez3 [J/K]; 

M, mass of fluid [kg]; 

m, mass of elementary particle, WI = M/S [kg]; 

P, relative mass of cluster [u]; 

P”o, molecular mass [u] ; 
N, number of clusters; 

N,, number of molecules in the surface layer of 

a nucleus; 

n, number of elementary particles per cluster; 
n 59 specific number of molecules (per unit of 

surface area); 
v, VI, vll, clusteral mass, of liquid, of gas 

(v = P/PO); 
pressure [N/m ‘1; 
instantaneous number of groups; 
reduced pressure, rc = P/PC ; 

special function; gas constant, R = R,/p 

[J/K, kg]; 
universal gas constant, R. = 8315 
[J/K, kmol]; 
change-in-phase energy, or, latent heat of 
vaporization [J/kg]; 
number of elementary particles ; 
surface energy [J/m’] ; 
absolute temperature [K]; 
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T, reduced temperature, T = T/TC ; 

701 triple point temperature (reduced); 

u, internal energy [J] ; 
f-6 specific internal energy [J/kg] ; 
V, volume [m3]; 
c, VI, r”, specific volume, of liquid, . of gas 

[m3iW; 
W, velocity of particle [m/s]. 

Subscripts 

a, average; corresponds to the average; 

b, bond energy; 

c, critical; 

e, elastic (or cohesive) energy; 

k, kinetic energy; 

m, maximum; corresponds to the maximum; 
.s, saturation; corresponds to saturation. 

I. CONCEPT OF CLUSTER 

0 WING to the existence of a field, fluid molecules group 
together in statistically defined clusters [l-S]. Con- 
siderable experimental evidence has also been collected 
on this effect [6-Q 

In this paper, a cluster is described as follows. A given 

gas quantity having mass M, volume V and temperature 
T is made up of S elementary fluid particles, the mean 
mass of which m = M/S. The particles agglomerate 
into structures named clusters. All clusters consisting 
of ni elementary fluid particles constitute a group of 

equal clusters. If Ni clusters make such a group, then 
the instantaneous number of elementary particles per 
group will be St = Nini, where i = 1,2,3,. . , p; and p, 
the instantaneous number of groups. Thus, the instan- 
taneous mean number of elementary particles per 
cluster amounts to: 
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This definition is in agreement with the conclusion 
made by Buckle in his “kinetic energy theory of cluster 
formation” [S], where he attempts to calculate the 
course of homogeneous condensation in a ciassicaI 

lnonoatomic vapor from molecular rather than surface 
energy and other thermodynamic precepts. 

As distinct from a cloud of non-interacting particles, 
the cluster is a structure with a center of attractive 
forces. So. the cluster is supposed to be a body. There- 

fore, in the proposed model, clusters are treated as 
point masses and by analogy with the kinetic theory 
of gases. as carriers of the translational kinetic energy 
component of total gas energy.* Consequently, the 

partial pressure P,, which results from (NilI’) clusters 
per unit of volume, will be: 

Since the specific volume r = V/M and hl = m f Nini, 

the total pressure is given by 1 

If we assume that the mass of elementary particle 
122 = 1.66 x lo-” kg, then the ratio k/nr becomes a 

universal gasconstant. R. = k/m = 8315, and the equa- 
tion of state of a real gas takes the following form: 

Pr = (R,>;p)T = BT (1) 

where /t = ti, the mean relative mass of cluster (ex- 

pressed in atomic mass units, u). This is the same 
equation as derived by Buckle [5]. 

So. unlike an ideal gas, the state of a real gas is 

defined by four parameters. For a number of tech- 
nologically important fluids the function B = B(P, c, T) 
is experimentalIy known (Saturated and Su~rheated 

Vapor Tables). Then equation (1) helps to directly 

determine the dependence of the mass of cluster on the 
parameters of state: LL = ,J’(P. r, T). 

A cluster. as a structure having a center of attractive 

forces, is qualified by its bond energy. Also. due to the 
existence of a field, there are attractive forces acting 
among the clusters (cohesive energy). It follows that 
the total energy of the mass M of a real gas can be 
considered as a sum of three components: 

E = Uk - Uh - r:<, = .f‘(P, T, L’, p) (2) 

where: L&, kinetic energy of clusters: Ub, the bond 

energy of clusters; and UC, the cohesive energy. 
It is known that each susceptible energy form can 

be detected only by applying an appropriate device. 
However, some energy forms are not detectable, though 
their quantities are measurable indirectly. 

In our case, temperature and pressure belong to the 
first group. They are normally detectable by means 
of a thermometer and a manometer, respectively. TO 
the second group belong the bond and cohesive 
energies, and consequently, the total energy of gas. 

____.________.~ __.._ -. _ -- 
*This means that other modes of kinetic energy, such as 

vibrational and rotational. have been formally negIected, 
but implicitly involved in bond energy. 

The detection methods mentioned are based on the 
detection of kinetic energy of particles, i.e. constituents 
of the gas in question. Thus, it has been assumed here 

that only the first component of the total gas energy: 

U& = N[&!2 = (3!2)NkT = (3,LZ)PV (3) 

is detectable by means of a thermometer or manometer, 
while the remaining two energy components, l_J, and 
Ue. are non-detectable. Thus, in order to correlate the 
parameters ofstate, Pand X with the total gas energy E, 
the following function. called detectability function, 

has been introduced: 

D = d E/d & = dr/duk 

By combining this function with equation (2) we 
obtain: 

de = D dUk = duk + d(ub + u,). (4) 

This is the foundation of the concept of detectability. 

2. CH.4NGE-IN-PHASE DETECTABILITY FACTOR 

The change-in-phase equilibrium state makes it pos- 
sible to reduce the number of independent variables 

presented in equations (I) and (2). Let us consider a 
liquid changing into vapor at constant temperature 

and pressure, T, and P,. So, from equation (4) and 
with the subscript s indicating the change in phase 
state, it follows: 

As a matter of fact. in the equilibrium state considered 

here, the ratio duk.,./d(uh~+U,,) is small as compared to 
unity, so that we can write: 

dr, = D, driks 2 d&h,, + u,,). 

From equationf3). which reads uiis = t3/2)P,1:,, we have 

duks = (3/2)e,dr,, followed by the integral: 

.Y” .<.,I 

j i 

till 

de, = D,s duks = (3,‘2) P, 0, dv,$. (5) 
(2’ P’ l 1%’ 

Bearing in mind that the foltowing holds: 
,.‘,.l 

! 
de,, I-- e” - c’ = r 

i,’ 

and that, by definition, the latent heat of vaporization 
equals the difference in the enthalpies, i.e. r = i” - i’. 
it folIows: 

dr, = di, = d(u,+ u,,J. 6) 

Finally, with D, = (3/2) ir,, we obtain, from equation 
(5) an expression for the average detectability factor: 

D,(T) = r!P,(c” -I”). (7) 

When r approaches the critical point (t-+1), the 
expression r/fs($‘- c’) becomes undefinable. However, 
using the Saturation Vapor Tables, the D,-values have 
been determined for a number of real fluids within the 
range of temperatures ro < T < 1, and plotted in a 
diagram, shown in Fig. 1. There have appeared two 
signi~cant qualities of curves obtained in this way: 

(I) The range of major scatter of measured points, 
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FIG. 1. Average detectability. 

6, is very narrow as compared to unity (0.05 and less); 
and 

(2) The slope ofcurves under consideration at point a, 
tan CL, is close to CI. 

Keeping these two things in mind, as well as a very 
smooth shape of the curves and their extreme mutual 
similarity, first, the existence of a function D, = f(r) 
has been assumed with a minimum at the point T = 1, 
that is (dfldz) = 0, and f(7) = D,; and secondly, a 
reduced detectability function, 

Do(r) = D,/D, = f(r)/Dc (8) 

has been defined by the following three statements: 

(a) dZDo/dr2 = K/r (K > 0, constant) 

(b) dD,/dz = 0 at r = 1 
(c) Do(r) = 1 at T = 1. 

The solution of differential equation (a), with bound- 
ary conditions (b) and (c), gives an expression for the 
reduced detectability function, termed here the 
“change-in-phase detectability factor”: 

Do = l+K(tlnr-tfl). (9) 

On the other hand, from equations (7) and (8) it 
follows: 

Do = r/DcPs(tl”- II’). (10) 

The DC-values have been determined for a number 
of fluids [9] and then the equations (9) and (10) com- 
pared within the temperature range ~~ < r < 1, as 
shown in Table 1 and Fig. 2. 

This results in the conclusion, interesting as much as 
practical, that K may be considered as a universal fluid 
constant whose value approximates K = 6.765kO.015, 
and consequently, the function Do(t) should be re- 
garded as a universal law, expressed by equation (9). 

Table 1. Critical detectability factor, D, 

Fluid Chemical symbol D, 

Water 
Mercury 
Carbon dioxide 
Ammonia 
Freon-12 
Freon-22 

Hz0 7.15 
Hg 4.00 

COZ 7.00 
NH3 7.21 

CFzClz 6.70 
CHF,Cl 7.16 

7 Hg . 
o H,O 

5 3- s *NH, / 
c 

c Freon-12 

0 $ . Freon -22 ./’ 
a, 

0” 

0 / 0 co, 
A 0 

C,H, . 
2p 

6 . / 

.F 
I- / 

I 
2 3 

Experiment, Do (equation IO) 

FIG. 2. Reduced detectability. 

3. CLUSTERAL MASS IN A CHANGE-IN-PHASE STATE 

mass of which is po. Thus, an expression for the number 

of molecules per cluster, termed clusteral mass, is 

Equation (1) is applicable to real fluids the molecular 

directly obtained : 

v = (Rol~o)U/Ptl) = Wo T,I~of’c)(7/~~). (11) 

This gives an essentially different explanation, i.e. 

another physical meaning to the complex (RT/Pa), 
already known in thermodynamics as compressibility. 

The same expression was derived by Buckle [5]. 
In case the fluid is in a change-in-phase state, it is 

well known how the pressure TI and the specific volumes 
of liquid and gaseous phases, ~1’ and u”, depend on 
temperature. By means of these dependences clusteral 
masses can be calculated from equation (11). 

Thus, clusteral masses v’ and v” have been deter- 
mined for several fluids within the temperature range 

ro < T < 1 and plotted in a diagram, shown in Figs. 
3 and 4. 

As far as the function T = f(v”) is concerned, one 

can see from this diagram that two wide temperature 
ranges are particularly characteristic: the initial range, 

in which single molecules (monomers) predominate; 

and the subsequent range, where clusters composed of 
two molecules each (dimers) come into being. Only in 
a comparatively narrow temperature range, 6, in the 
vicinity of the critical point, larger clusters (trimers and 
quadrimers) are predominant. In this narrow range, 
the curve approaches a point v” = v,, where dr/dv” = 0 
and t = 1. Similarly, the function T = f(v’), after passing 
a singular point, suddenly reaches the point v’ = v,, 
where dz/dv’ = 0 and 7 = 1 (Fig. 5). 
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Reduced temperature, T 

FIG. 3. Variation of liquid clusteral mass with saturation 
temperature 
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FIG. 4. Variation of gaseous clusteral mass 
with saturation temperature 
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These curves can be very successfully approximated 
by the following two expressions (up to the point 
t = l-6 : 0.97*0.01): 

&I’ = 10exp[KI(l -7)/r] (12) 

and 

where : 

1”’ = [(a- T,j)i(U- T)]” (13) 

K, _. Kz. tluid constants: 

0 = (t”-\.f’k )‘(I -r; k ); 

I’, = 4.0+0.25. 

-I. ENTHALPY OF VAPOR AS A FtINCTION OF 

SATURATION TEMPERATZIRE 

In order to demonstrate the usefulness of the newly 

introduced concept of detectability, an attempt has 
been made in the following two sections to derive the 
function i” = ,f‘(r). and the equation of phase equilib- 

rium, z = ,f(t). 

Equation (4) may assume the form: (D- l)duk = 
d(Ldh+ II,) which, for saturated vapor and using equation 
(9). reads : 

D,[&,(r) - I] dtr; = d(u; + nf). 

Bearing in mind equation (6). the above expression 
becomes: 

di” = L&[&(r) - I] du;. (14) 

However, if applied to clusters of saturated vapor, 
equation (3) may be written as follows: 

u;: = (3kTc,2M)Ns 

= (3k7;:2pn)(t:Y”) 

= (1,‘2K,)(rh”) 

where: K,, = po/3k7;: 

Using the differential of the last expression, which 

reads 

du; = ( 1/2K,)(r?‘)(dtlr -dv”/v”). 

and equation (9) being substituted for Do, equation 
(14) assumes the following form: 

(2Ko/D,K)dY = (Th T--S+ I)(r~~“)(dziT-d\l”iv”). (15) 

Now, with equation ( 13) and ( 15) it is possible to 
derive an expression showing a relationship between 

enthalpy and saturation temperature, though in a 
differential form. Finally an integration (numerical or 
graphical) of this relation enables to obtain enthalpy i” 
as function of 1, up to the constant of integration. 

5. EQUATION OF PHASE EQLlILIBRIUM 

By comparing equation (IO) with the well-known 
Clausius-Clapeyron equation : 

dP!d T = I’; T(r,” - 13’) 

we can directly obtain the differential equation of 
phase equilibrium: 

drr!‘dr = D,&,(T)n;T. 

To solve it equation (9) has been used and after re- 
arrangement the equation of phase equilibrium is 
obtained in its general form: 

Inn = D,InR (16) 
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where 

InR = [l+K(l+t)]Inz+2K(l-7). 

Bearing in mind that K = const., as shown in Section 
2, the function In R may be tabulated for convenience 
once and for all. 

The equation of phase equilibrium (equation 16) is 
checked for correctness [9]. Applying this equation to 
a number of fluids, pressure values are calculated for 
the range of points To < T < 1 and then deviations 

from the tabular values obtained. It has been shown, 
for the fluids examined, that the deviations are mostly 
about +0.2”/,, increasing only in the vicinity of triple 

and critical points. Namely, near the critical point, they 
go up to + 1.5, and near the triple point, up to + 5:);. 

6. VAPORIZATION AND LIMITING LIQUID SUPERHEAT 

A liquid vaporizes either in its volume by forming 
bubbles, or, without bubbling, from its free surface. 
The former case is called boiling, while the latter is 

known as free surface vaporization. This paper con- 
siders the so-called undisturbed pool boiling. The start- 

ing assumption is that in a system under consideration 

the mean pressure does not chatige during the boiling. 
Boiling which occurs after isoentropical depressur- 

ization of a liquid in which there is no heating surface, 

is called uolume boiling. The distribution of vapor 
bubbles formed in the liquid volume is quite casual. 
The liquid at pressure P, and saturation temperature 
T, becomes, after depressurization AP, evenly super- 
heated with relation to the lowered pressure P’ = 
P,-AP. This condition is termed metastable equi- 
librium, or metastable liquid superheat. 

When liquid borders on a heating surface, the vapor 
bubbles appear on this surface. The phenomenon is 
termed surface boiling. The heating surface and the 
comparatively thin liquid layer next to it are at tem- 
peratures higher than the respective saturation tem- 

perature. Accordingly, the liquid in this boundary zone 
is always superheated, while the temperature outside 

this zone may be either equal or subcooled compared 
to the saturation temperature. Thus, there are two 
different conditions under which the phenomenon can 
take place, and therefrom the terms: saturation boiling 

and subcooled boiling. 

In accordance with the accepted model, liquid is 

made up of clusters. A cluster may be regarded as a 
microscopic drop differing from a macroscopic drop 
not only in size (Frenkel[3]), but also in that it is com- 
posed of individual molecules, while a macroscopic 
drop consists of molecule clusters. When colliding with 
another cluster or with some other solid body, the 
resulting structure reaches an excited internal state that 
may be high enough to cause the partial destruction 
(splitting), or total destruction (vaporization) of the 
structure. For a given expenditure of kinetic energy, 
the cluster reaches a maximum excitation only in 
central inelastic collision with a large solid body, or 
with a similar cluster moving at the same velocity but 
in the opposite direction. 

Imagine an infinite liquid continuum under pressure 

P, and at saturation temperature z. Let’s assume a 

small volume having mass JvJ, whose excitation has 

been increased by an amount Mde. Suppose that the 
specific energy of critical excitation, Ae, is sufficient to 

convert a liquid unit mass into a vapor bubble having 
volume v”. Then we have M = Sm = V/v” and the 
energy balances will be: 

MAe=&J{:de=iM[,ydi+[IdET 

= M(i”- i’) + McAT 
and 

I 

II ,.I, 

n/rAe = d(Sc) +kJP, 
,’ I I 

A 
dc+a dA 

r’ 0 

where: dET = bJcdT, energy of metastable superheat; 
E, bond energy of cluster per molecule: cr, specific bond 
energy of liquid’s surface structure, also called surface 

energy; A. surface area of a bubble. 
The above two balances indicate, firstly. that the 

total energy MAe appears in two forms, i.e. as a change 

in enthalpy and as a liquid superheat. Secondly, during 
the formation of a bubble this energy is transformed 
into: (a) a change in bond energy (the transition from 
liquid to vapor clusters); (b) work done by vapor 

expansion: and (c) the bubble surface energy. 
Upon integration we have, 

Ae = i” - i’ + CAT = (E” - s’)/m + P,( I”’ - c’) + Ac”a/V. 

Considering that if’- i’ = r = u”- u’+ P,,(c”- d). it is 

finally possible to write down: 

CAT = Ac”aiV-e(~“-&‘)/m-(u”-11’). (17) 

The bubble volume V may take an arbitrary shape. 
However, only the form of a sphere is a stable structure, 

considering that for a bubble having a given volume 
V, the ratio I/,/A reaches its maximum when the volume 

assumes a spherical shape: 

I/,/A,,, = (K/A)max = ~43 (18) 

where pE is radius of the spherical bubble. 
A minimum spherical bubble is called a nucleus. 

Suppose that a nucleus originates from a microscopic 
liquid mass consisting of v, molecules; then the radius 
of the nucleus will be, 

p = (3r”mv,/4n)’ ‘3, 

It follows from (18) and (19), 

A,,,,& = 3/pc = (36x)‘/3(o”mv,)-“3 

(19) 

which, when substituted in (17), gives the following 
expression for the limiting metastable liquid super- 
heat AT: 

CAT = (36n)1!3t~“2’3(mv,)-’ 3cr 

+ (E” - E’)/rn - (u”- u’). (20) 

It is important to note that the physical nature of 
specific energies g and E is identical, and therefore there 
must be an analytical relationship between them. If we 
knew the number of molecules N, composing the 
surface layer of liquid surrounding the nucleus then, 
knowing the size of the nucleus, we could easily find 
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out the density of molecuies in the layer: ns = N,/& 
wherefrom the required relationship would foilow: 

G = n,, E. (21) 

Upon coming into a central collision, a drop of mass 
mv, is deformed into a flat circular disk. With sufficient 
excitation, this deformation may finish in the decom- 

position of the disk into individuaf monomers (mol- 

ecules) and comparatively few dimers and trimers. The 
surplus of excitation energy appears as the kinetic 

energy of these particles. In other words, there arises 
a gaseous substance that is commonly termed vapor. 

Whileexpanded, the vapor forms an unstable lenticular 
cavitation, but if it possesses critical energy, it will 
form a stable spherical nucleus. By means of equation 

(19) it is thus possible to obtain the surface area of the 
nucleus: 

A, = 4rr(3u”mvC/4n)2!3. (22) 

At critical excitation. the drop will be maximally 
stretched into a monomolecular layer the surface of 

which may be either flat or curved. If flat, the 
nucleation will begin with a lenticular shape. This 

means that in the surface layer of such a cavitation 
there wili be at least 2v, molecules, or more, which is 
deduced from purely geometrical reasoning. If, how- 
ever, the stretch surface is curved, this number will be 

smaller. On this basis, the number of moIecuIes in the 
surface layer is given by the expression, N, = XV,, 
where x & 2. In this way, by means of n, = N,/A, and 
using equation (22). we get, 

x = n s (3&c,% )’ ’ c 3(11zt.“)Z:3. CW 

It follows from (21) that the density of molecules in 
the surface layer, n,, is determined by the physical 
nature and thermodynamic condition of the fluid, con- 
sidering that for each fluid there are definite depen- 

dences, a(T) and E(T). Keeping equation (23) in mind. 
it follows that the quantity x must also be a function 

of the same parameters. The difEculty is in that the 
function cr( T) is known for some fluids, while the cor- 
responding function E(T) is not. It is, however, possible 
to assert a priori that E = 0 for v = 1. Thus, as long as 
5~” 2 1, we can take it that c” 2 0 as well; consequently, 
making use of (23)> we obtain from equation (20): 

CAT = 1-i (36xv”2/mv,)‘~3a-(u”-u’). ‘(24) 
! ! 

Namely, this equation is valid in the range of relatively 
small temperatures only. 

So far, we have seen that the parameter (x 3 2) 
depends on the kind of fluid and the temperature. An 
additional conclusion is now derived from equation 
(24) saying that the lower limit of .Y is given by the 

expression: l/.x < F, where 

F = 1 -(Au/a)(36r#/my C )-1’3. 

We are easily assured by a numerical check that 
in the real domain F is slightly smaller than unity. 
For water, indeed, x = 1.4.. ,4, within the range of 
r = 0.422.. .0.55. 

To be able to apply expression (24) to surface boil- 
ing, we must remember that we are dealing here with 
continual transfer of energy through a heating surface. 
The difference between the heating surface temperature 
and the mean temperature of the thin boundary layer 
is given by the well-known relationship: 

where q, thermal flux through the heating surface. and 
X, heat-transfer coefficient. 

In this way, equation (24) is obtained in a form 
adjusted to the parameters of surface boiling: 

CAT, = cq,h = 4.836~(f1.“~:i??v~)’ 3(1 - l/s) - Au. (25) 

The thin boundary layer mentioned above may be 
considered as a uniformly superheated zone in which 

the nucleation and the initial growth of a bubble take 
place, while the remaining part of the volume prac- 
tically plays no role in this process. Consequently, 

AT, is not dependent on whether the saturation or 

subcooled boiling takes place, which is in agreement 
with experimental evidence [IO]. 

In addition. equation (25) shows that, under given 
conditions, the thermal flux ~1 can be changed within 
a wide range without any apparent effect on A7;,, 
provided there is a simultaneous reciprocal change in 
the coefficient a. This was also experimentally con- 
firmed by Stefanovic [lo]. 

The heating surface exerts a decisive influence on the 
number of molecules N, which go to form the surface 
layer of a nucleus. Namely, when colliding with the 
heating surface, the cluster is stretched into a mono- 
molecular layer which for a moment sticks to the heat- 
ing surface due to adhesion. Just thereafter, owing to 
some additional impulses from the heating surface, the 
molecular layer disintegrates and the free molecules 
form a semilenticular bubble. The size of the bubble 
base, which is part of the heating surface, obviously 
depends on the wetting angle. furthermore, geometri- 
cally speaking, it is evident that, when a cluster 
collides with heating surface and for a given I’,, the 

quantity x = Ns/v, is minimal compared to all other 
kinds of nucleation considered here. However. in 
equation (25) for a minimum .Y the coefficient I 1 - 1j.x) 
will be minimal. This easily accounts for the well-known 

experimental fact about the great difference in the 
degree of superheat between volume and surface boil- 
ing, It is worth mentioning that until now this phenom- 
enon has not been explained at all [lo]. 

Likewise, the initial shape of the stretched molecular 
layer may be considerably affected by impurity particles 
contained in the liquid, and even by the microgeometry 
of the heating surface, although definitely not in the 
domain of crevice size where Bankoff [l I] tried to find 
an explanation for this effect. In this connection 
Novakovic [112] has already asserted his doubt based 
on the well known experiments of water boiling on the 
mercury heating surface. PhenonlenologicalIy. the in- 
fluence of the above factors is well known, but it is 
only on the basis of the mechanism described here 
that it becomes clear that attempts to interpret ana- 
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lytically all possible influences on which metastable 

superheat depends in real conditions are next to 

hopeless. 
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Unlike the lenticular bubble, which easily yields to 
external pressure and collapses, the spherical nucleus 
may survive in the conditions of natural fluctuations 
of liquid density. The moment that the nucleus comes 
into being, the surrounding temperature 7” may be 

the same as, lower or higher than the nucleus tem- 
perature, T,. If TL > T,, then under the action of free 
surface vaporization, t’le nucleus begins to grow with- 

out changing its spherical shape. The bubble growth 
is a well studied phenomenon, especially when volume 

boiling is meant. This growth will last as long as the 
energy is transferred from the surroundings towards 
the cavitation surface. 

While the bubble’s diameter is increased, the strength 
of the surface layer is gradually decreased, so that the 
fluctuations and convective movement of liquid begin 

to deform it more easily. Furthermore, the coalescence 
of bubbles becomes more frequent as they come upon 
each other. 

The reduced limiting superheat, as given by equa- 
tions (24) and (25) has been compared with the experi- 
mental results [13-1.51 in the domain of their validity. 
The agreement of the theory with the experiments is 

almost perfect. 
7. CONCLUSION 

The proposed model of fluid enables us to acquire 
a better understanding of liquid’s behaviour during the 
process of vaporization. It also proves to be a useful 
instrument for calculating the corresponding fluid 
parameters with a fairly high accuracy. 

The statement that the mass of a complex fluid 
particle, a cluster, should not be considered as constant 
but rather as dependent on the parameters of state, 
seems to be fully justified. 
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CHANGEMENT DE PHASE D’UN FLUIDE CONSTITUE D’AGREGATS MOLECULAIRES 

R&sum&Dans le present aeticle l’existence d’agrkgats mol&ulaires est supposke a priori. On montre que 
la masse statistique moyenne d’un agregat dkpend des variables d’etat du gaz, tandis que l’tnergie 
cinktique moyenne des agregats est proportionnelle g la tempirature mesurke et I’inergie cinetique 
volumique proportionnelle B la pression mesurC‘e. 

Le concept de dttection de la temptrature et de la pression a ttt introduit et on a obtenu une 
expression pour le facteur de dktection en changement de phase. De plus, on a obtenu des expressions 
pour la pression de saturation et pour le nombre moyen de mol&ules par agrkgat en fonction de la 
temptrature de saturation. 

Enfin, un modkle de vaporisation est proposi: duquel on dbduit une expression de la surchauffe limite 
du liquide. 

L’accord de ces expressions avec les rCsultats exptrimentaux s’avtre presque parfait. 

DER PHASENWECHSEL EINES AUS MOLEKijL-CLUSTERN 
ZUSAMMENGESETZT BETRACHTETEN FLUIDES 

Zusammenfassung-In der vorliegenden Arbeit wird das Vorhandensein von Molekiil-Clustern a priori 
angenommen; es wird gezeigt, daI3 die mittlere statistische Masse eines Clusters von den Gaszustands- 
griiDen abhtingt, wlhrend die mittlere kinetische Energie der Cluster proportional zur gemessenen 
Temperatur und die auf die Volumeneinheit bezogene kinetische Energie proportional zum gemessenen 
Druck ist. Es wurde das Konzept der Trennbarkeit von Temperatur und Druck eingefiihrt und ein 
Ausdruck fiir den Phasenwechsel-Trennfaktor abgeleitet. Zus&lich wurde ein Ausdruck fiir den 
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S~ttigungsdruck und die mittlere Moi~k~~zahi pro Cluster ais Funktion der S~tt~gungstemperatur 
abgeleitet. Schjje~lich wurde ein Verdampfungsmodeil vorgeschlagen und eine Beziehung fur die 
Grenziiberhitzung der Fhissigkeit hergeleitet. Die #bereinstimmung all dieser Beziehungen mit den 

experimentelf ermittelten Werten ist nahezu vollkommen. 

QA30BOE nPEBPA~EH~E FA3A, COCTOIfUfEfO M3 MOJlEKY,TRPHblX KJlACTEPOB 

Atwsauffs-f? cTaTbe cyutecTeot3ayae MOneKyn~pHbIX KnacTepoB ~p~~~MaeTC~ a puiori, YTO 
rtOKa3blBaeT. 'fT0 CpeAHRR CTaTHCTNqeCKaR MWCa OTLtenbHOrO KnaCTepa 3aBHCMT OT FlapaMeTpOB 
coc~oswi~ ra38,Toraa KaK cpenHnfl KHHeTwtecKaff 3Hepren KnacTepos nponopuwoHanbHa MsMepeff- 
HOli reMneparype,a KMHeTWYeCKaR 3HeprHSt Ha enHHauy o6beMa - M3MepeHHOMy LtaBneHrnto ra3a. 
BBeJteHbI nOHIlTwl TeMneparypbr ti nawtemist li nonyreH0 BblpaxeHHe nnfl K03&@WieHTa onpene- 
JtlieMOCTK +a3OBOrO npeBpaIUeHH9. KpoMe TOrO, IIOJIy'ieHbl t3blpa~eHHs JIJD7 ,LtaBJIeHMR HaCbIlUeHMII 
M cpenxero wcna Moneryn B KnacTepe KaK@yH~ms& TeMnepa?-ypbI HacbuueHwx HaKOHeu,npeJtJIo- 
xceHa Moltenb napoo6pa3oBaH~~ M rionyseH0 3blpa~eH~e nnif n~~enb~oro neperpesa ~~nKo~Tn. 
~Or~~CR~~Ony~eHHbtX~bi~~~eHil~C3KC~ep~M~HTanbHbiMIlAaHHb~MIloKa3~nO~brtO~TM WeanbHblM. 


