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A, surface area [m?]; To, triple point temperature (reduced);
C, constant of integration; U, internal energy [J];
c, specific heat [J/kg, K]; u, specific internal energy [J/kg];
Dy,  change-in-phase detectability factor v, volume [m*];
(reduced); v, v, 0", specific volume, ... of liquid, ... of gas
D, critical detectability factor; [m*/kg];
E, total energy [J]; w, velocity of particle [m/s].
e, energy per unit of mass [J/kg];
g, specific bond e1[1e]rgy of cluster Subscripts
(per molecule) [J];
i, i',i", enthalpy, ... of liquid, ... of vapor [J/kg]; @ average; corresponds to the average;
K.  universal fluid constant, K = 6.765+0015; ~ ©»  bondenergy;
Ko, K1, K>, constants in equations; & crmgal; .
k., Boltzmann'sconstant,k = 1.38-10-2>[J/K]; &  clastic (or cohesive) energy;
M,  mass of fluid [kg]; k, Kinetic energy; .
m, mass of elementary particle, m = M/S [kg]: m, maximum; corresponds to the maximum;
I relative mass of cluster [u]: s, saturation; corresponds to saturation.
o,  molecular mass [u];
N, number of clusters; 1. CONCEPT OF CLUSTER
Ny, number of molecules in the surface layer of 5y NG to the existence of a field, fluid molecules group
a nucleus; _ together in statistically defined clusters [1-5]. Con-
1, number of elementary particles per c}uster; siderable experimental evidence has also been collected
ny, specific number of molecules (per unit of on this effect [6-8].
., surface area); o In this paper, a cluster is described as follows. A given
v, Vv, clusteral mass, ... of liquid, ... of gas gas quantity having mass M, volume V and temperature
v = pio); s T is made up of S elementary fluid particles, the mean
P, pressure [N/m*}; mass of which m = M/S. The particles agglomerate
P, instantaneous number of groups; into structures named clusters. All clusters consisting
LS reduged pressure, = P/P; of n; elementary fluid particles constitute a group of
R, special function; gas constant, R = Ro/u equal clusters. If N; clusters make such a group, then
[J/, K. kg]: the instantaneous number of elementary particles per
Ro.  universal gas constant, Ro = 8315 group will be §; = N;n;, where i = 1,2,3,...,p; and p,
[V/K, kmol]; the instantaneous number of groups. Thus, the instan-
" change-in-phase energy, or, latent heat of taneous mean number of elementary particles per
vaporization [J/kg]; cluster amounts to:
S, number of elementary particles; , -
o, surface energy [J/m?]; _ /
T, absolute tempeEature;J [X]; "= ;Nini/ ;N'
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Abstract—In the present paper the existence of molecule clusters is assumed a priori, showing that the
mean statistical mass of a cluster depends on the gas parameters of state, while the mean kinetic energy
of clusters is proportional to the measured temperature, and the kinetic energy per unit of volume—to
the measured gas pressure. The concept of temperature and pressure detectability has been introduced
and an expression for the change-in-phase detectability factor derived. In addition, expressions for the
saturation pressure and the mean number of molecules per cluster have been derived as functions of
saturation temperature. Finally, a model of vaporization has been proposed and an expression for the
limiting liquid superheat derived. The agreement of all these expressions with the experimental results
proves to be almost perfect.

NOMENCLATURE T, reduced temperature, T = T/T;;

15



16 M. D. Ristic

This definition is in agreement with the conclusion
made by Buckle in his “kinetic energy theory of cluster
formation™ [5], where he attempts to calculate the
course of homogeneous condensation in a classical
monoatomic vapor from molecular rather than surface
energy and other thermodynamic precepts.

As distinct from a cloud of non-interacting particles,
the cluster is a structure with a center of attractive
forces. So, the cluster is supposed to be a body. There-
fore, in the proposed model, clusters are treated as
point masses and by analogy with the kinetic theory
of gases. as carriers of the translational kinetic energy
component of total gas energy.* Consequently, the
partial pressure P;, which results from (N;/¥) clusters
per unit of volume, will be:

P, = (N;/V)kT.

14
Since the specific volume v = V/M and M = m Y. N;n;,
the total pressure is given by !

r r { P
P=Y P =(kT/)Y N;/mY Nin; = (k/m)(1/n)(T/o).
1 i ; 1
If we assume that the mass of elementary particle
m=1.66 x 10727kg, then the ratic k/m becomes a
universal gas constant, Ry = k/m = 8315, and the equa-
tion of state of a real gas takes the following form:

Pr=(Ro/)T = BT (1)

where pt = n, the mean relative mass of cluster {ex-
pressed in atomic mass units, u). This is the same
equation as derived by Buckle {5].

So. unlike an ideal gas, the state of a real gas is
defined by four parameters. For a number of tech-
nologically important fluids the function B = B(P,, T}
is experimentally known {Saturated and Superheated
Vapor Tables). Then equation (1) helps to directly
determine the dependence of the mass of cluster on the
parameters of state: g = f(P,2, T).

A cluster, as a structure having a center of attractive
forces, is qualified by its bond energy. Also, due to the
existence of a field, there are attractive forces acting
among the clusters {cohesive energy). It follows that
the total energy of the mass M of a real gas can be
considered as a sum of three components:

E=U—U—=U= f(P.T,v, ) 2

where: U, kinetic energy of clusters: U,, the bond
energy of clusters; and U,, the cohesive energy.

It is known that each susceptible energy form can
be detected only by applying an appropriate device.
However, some energy forms are not detectable, though
their quantities are measurable indirectly.

In our case, temperature and pressure belong to the
first group. They are normally detectable by means
of a thermometer and a manometer, respectively. To
the second group belong the bond and cohesive
energies, and consequently, the total energy of gas.

*This means that other modes of kinetic energy, such as
vibrational and rotational, have been formally neglected,
but implicitly involved in bond energy.

The detection methods mentioned are based on the
detection of kinetic energy of particles, i.e. constituents
of the gas in question. Thus, it has been assumed here
that only the first component of the total gas energy:

U= Ngw?/2 = (3/2)NkT = (3/2)PV {3)

is detectable by means of a thermometer or manometer,
while the remaining two energy components, U, and
U,, are non-detectable. Thus, in order to correlate the
parameters of state, P and T, with the total gas energy E,
the following function, called detectability function,
has been introduced:

D = dE/dU, = de/du,.

By combining this function with equation (2) we
obtain:

de = Ddi{k == duk—(—d{ub—f-u(,). {4)

This is the foundation of the concept of detectability.

2. CHANGE-IN-PHASE DETECTABILITY FACTOR

The change-in-phase equilibrium state makes it pos-
sible to reduce the number of independent variables
presented in equations (1) and (2). Let us consider a
liquid changing into vapor at constant temperature
and pressure, T; and P,. So, from equation (4), and
with the subscript s indicating the change in phase
state, it follows:

de, = dug+ dluy, +1) = Dodug,.

As a matter of fact, in the equilibrium state considered
here, the ratio du,/d{ups+u,s) is small as compared to
unity. so that we can write:

de, = D, dug, x d{ups+teeg).

From equation{3), which reads u;; = (3/2)P,1;, we have
duys = (3/2) P, du;, followed by the integral:

"

J dex = j D.\‘ duk.s = (3;‘/2)PV Dsj‘

’ I

i

Cdi,. (5)

Bearing in mind that the following holds:

R
e

J de, = ¢"—¢ = 1r
e’

and that, by definition, the latent heat of vaporization
equals the difference in the enthalpies, ie. r=1"—7,
it follows:

de, = diy = dlutpe+ ties)- {6}

Finally, with D, = (3/2) D,, we obtain, from equation
(5), an expression for the average detectability factor:

Do(t) = H/PL" — 1) {7

When 7 approaches the critical point (zr—1), the
expression r/P{t” — ¢’} becomes undefinable. However,
using the Saturation Vapor Tables, the D,~values have
been determined for a number of real fluids within the
range of temperatures vy < 1t <1, and plotted in a
diagram, shown in Fig. 1. There have appeared two
significant qualities of curves obtained in this way:

(1) The range of major scatter of measured points,



Change in phase of a fluid 17

141~ Ammonia

Dﬂ

Mercury

Detectability factor,

P

3 | | L | I
0.4 05 06 07 08

Reduced temperature, T
F1G. 1. Average detectability.

4, is very narrow as compared to unity (0.05 and less);
and

(2) The slope of curves under consideration at point a,
tana, is close to o.

Keeping these two things in mind, as well as a very
smooth shape of the curves and their extreme mutual
similarity, first, the existence of a function D, = f(z)
has been assumed with a minimum at the point t = I,
that is (df/dt) =0, and f(z) = D.; and secondly, a
reduced detectability function,

Do(t) = Du/D. = f(1)/D: ®)
has been defined by the following three statements:

(a) d2Dg/dr? = K/t (K > 0, constant)
(b) dDo/dt =0 atz=1
(¢) Do(r) =1 atrt=1.

The solution of differential equation (a), with bound-
ary conditions (b) and (c), gives an expression for the
reduced detectability function, termed here the
“change-in-phase detectability factor”:

Do=14+K(tlnt—1+1). 9)

On the other hand, from equations (7) and (8) it
follows:

Do = /D PJ(" — ). (10)

The D.-values have been determined for a number
of fluids [9] and then the equations (9) and (10) com-
pared within the temperature range 1o <t <1, as
shown in Table 1 and Fig. 2.

This results in the conclusion, interesting as much as
practical, that K may be considered as a universal fluid
constant whose value approximates K = 6.765+0.015,
and consequently, the function Dy(z) should be re-
garded as a universal law, expressed by equation (9).

Table 1. Critical detectability factor, D,

Fluid Chemical symbol D,
Water H,0 7.5
Mercury Hg 4.00
Carbon dioxide CO, 7.00
Ammonia NH; 7.27
Freon-12 CF,Cl, 6.70
Freon-22 CHF,Cl 7.16

v Hg
v
o HZO
3 3 eNH,
5 v Freon -12 v
E u Freon-22 '/
o
A 0 Co, °
& ©

s C,Hg

Theory,

é I 1
3

Experiment, D, {equation 10}

F1G. 2. Reduced detectability.

3. CLUSTERAL MASS IN A CHANGE-IN-PHASE STATE

Equation (1) is applicable to real fluids the molecular
mass of which s po. Thus, an expression for the number
of molecules per cluster, termed clusteral mass, is
directly obtained:

v = (Ro/po)(T/Pv) = (Ro Te/po Po)(z/nv).  (11)

This gives an essentially different explanation, ie.
another physical meaning to the complex (RT/Pv),
already known in thermodynamics as compressibility.
The same expression was derived by Buckle [5].

In case the fluid is in a change-in-phase state, it is
well known how the pressure n and the specific volumes
of liquid and gaseous phases, ' and v”, depend on
temperature. By means of these dependences clusteral
masses can be calculated from equation (11). -

Thus, clusteral masses v and v have been deter-
mined for several fluids within the temperature range
10 < 7 < 1 and plotted in a diagram, shown in Figs.
3 and 4.

As far as the function 1 = f(v") is concerned, one
can see from this diagram that two wide temperature
ranges are particularly characteristic: the initial range,
in which single molecules (monomers) predominate;
and the subsequent range, where clusters composed of
two molecules each (dimers) come into being. Only in
a comparatively narrow temperature range, 6, in the
vicinity of the critical point, larger clusters (trimers and
quadrimers) are predominant. In this narrow range,
the curve approaches a point v’ = v, where dt/dv" =0
and r = 1. Similarly, the function t = f(v'), after passing
a singular point, suddenly reaches the point v' = v,
where dt/dv' = 0 and © = 1 (Fig. 5).
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These curves can be very successfully approximated
by the following two expressions (up to the point
t=1-020971+001):

' = 10exp[K;(1—1)/] (12)

RisTIC
and
v = [la—to)ilu—1)]¥ (13}
where:
K ... K. fluid constants:
a=(to—vi* 1 —v}lry);
v, = 4.040.25,
4, ENTHALPY OF VAPOR AS A FUNCTION OF
SATURATION TEMPERATURE
In order to demonstrate the usefulness of the newly

introduced concept of detectability, an attempt has
been made in the following two sections to derive the
function i” = f(r), and the equation of phase equilib-
rium, 7 = f(7).

Equation (4) may assume the form: (D—1)du, =
d(up+ u,) which, for saturated vapor and using equation
(9). reads:

D [Do(t)— 1] dug = dius +ul).

Bearing in mind equation (6), the above expression
becomes:

di” = D.[Do(t)— 1] duj. (14)

However, if applied to clusters of saturated vapor,
equation (3) may be written as follows:

uy = (3kT.)2M )Nt
= (3kT./2u0)(z/v")
= (12K o)(t/v")
where: Ko = po/3kT;
Using the differential of the last expression, which
reads

duy = (12K o) (t/v")(dz/r —dv' V"),

and equation (9) being substituted for Do, equation
(14) assumes the following form:

(2Ko/D.K)di" = (tInt—7+ )/ v")dr/r—dv"/v"). (15)

Now, with equation (13) and (15) it is possible to
derive an expression showing a relationship between
enthalpy and saturation temperature, though in a
differential form. Finally an integration (numerical or
graphical) of this relation enables to obtain enthalpy i
as function of 7, up to the constant of integration.

5. EQUATION OF PHASE EQUILIBRIUM
By comparing equation (10) with the well-known
Clausius—Clapeyron equation:
dP/AT = r/T(r" 1)
we can directly obtain the differential equation of
phase equilibrium:

dn/dt = D.Dy(t)m/1.

To solve it equation (9) has been used and after re-
arrangement the equation of phase equilibrium is
obtained in its general form:

Inn=D.InR (16)
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where
InR=[1+K(Il+7)]lnt+2K(l —1).

Bearing in mind that K = const., as shown in Section
2, the function In R may be tabulated for convenience
once and for all.

The equation of phase equilibrium (equation 16) is
checked for correctness [9]. Applying this equation to
a number of fluids, pressure values are calculated for
the range of points 7o <7 <1 and then deviations
from the tabular values obtained. It has been shown,
for the fluids examined, that the deviations are mostly
about +0.2%, increasing only in the vicinity of triple
and critical points. Namely, near the critical point, they
go up to + 1.5, and near the triple point, up to + 5%,

6. VAPORIZATION AND LIMITING LIQUID SUPERHEAT

A liquid vaporizes either in its volume by forming
bubbles, or, without bubbling, from its free surface.
The former case is called boiling, while the latter is
known as free surface vaporization. This paper con-
siders the so-called undisturbed pool boiling. The start-
ing assumption is that in a system under consideration
the mean pressure does not charige during the boiling,

Boiling which occurs after isoentropical depressur-
ization of a liquid in which there is no heating surface,
is called volume boiling. The distribution of vapor
bubbles formed in the liquid volume is quite casual.
The liquid at pressure P; and saturation temperature
T, becomes, after depressurization AP, evenly super-
heated with relation to the lowered pressure P’ =
P,—AP. This condition is termed metastable equi-
librium, or metastable liquid superheat.

When liquid borders on a heating surface, the vapor
bubbles appear on this surface. The phenomenon is
termed surface boiling. The heating surface and the
comparatively thin liquid layer next to it are at tem-
peratures higher than the respective saturation tem-
perature. Accordingly, the liquid in this boundary zone
is always superheated, while the temperature outside
this zone may be either equal or subcooled compared
to the saturation temperature. Thus, there are two
different conditions under which the phenomenon can
take place, and therefrom the terms: saturation boiling
and subcooled boiling.

In accordance with the accepted model, liquid is
made up of clusters. A cluster may be regarded as a
microscopic drop differing from a macroscopic drop
not only in size (Frenkel [3]), but also in that it is com-
posed of individual molecules, while a macroscopic
drop consists of molecule clusters. When colliding with
another cluster or with some other solid body, the
resulting structure reaches an excited internal state that
may be high enough to cause the partial destruction
(splitting), or total destruction (vaporization) of the
structure. For a given expenditure of kinetic energy,
the cluster reaches a maximum excitation only in
central inelastic collision with a large solid body, or
with a similar cluster moving at the same velocity but
in the opposite direction.

Imagine an infinite liquid continuum under pressure

P, and at saturation temperature 7. Let’s assume a
small volume having mass M, whose excitation has
been increased by an amount M de. Suppose that the
specific energy of critical excitation, Ae, is sufficient to
convert a liquid unit mass into a vapor bubble having
volume v". Then we have M = Sm = V/v” and the
energy balances will be:
\4 v 14
MAe=MJ de = Mj di+J dEr

L L L

= M(@i" =Y+ McAT
and

t

MAe=j d(Sa)-i—Mst

v

A
dv+ O’j dA

0

where: dEr = McdT, energy of metastable superheat;
¢, bond energy of cluster per molecule: o, specific bond
energy of liquid’s surface structure, also called surface
energy; A, surface area of a bubble.

The above two balances indicate, firstly, that the
total energy MAe appears in two forms, i.e. as a change
in enthalpy and as a liquid superheat. Secondly, during
the formation of a bubble this energy is transformed
into: (a) a change in bond energy (the transition from
liquid to vapor clusters); (b) work done by vapor
expansion ; and (c) the bubble surface energy.

Upon integration we have,

Ae =i"—i'+cAT = (¢"—&)/m+ P(v" —v') + Av"g/V.

Considering that " — i = r = u”" —u'+ P,(t" — v'). it is
finally possible to write down:

AT = Av"o/V+(¢" —&)m—u"—u). (17)

The bubble volume V may take an arbitrary shape.
However, only the form of a sphere is a stable structure,
considering that for a bubble having a given volume
V. theratio V,/A reaches its maximum when the volume
assumes a spherical shape:

Vc/Amin = (VC/A)max = pc/3
where p, is radius of the spherical bubble.
A minimum spherical bubble is called a nucleus.
Suppose that a nucleus originates from a microscopic
liquid mass consisting of v, molecules; then the radius
of the nucleus will be,
p = Gu'mv./4m)ti3,
It follows from (18) and (19),

Apinl Ve = 3pe = (36m) (0" my) ™12

(18)

(19)

which, when substituted in (17), gives the following
expression for the limiting metastable liquid super-
heat AT :

eAT = (36m) 30" 3 (my,) "1 3a

+(E"—&Ym—u" —u). (20)

It is important to note that the physical nature of
specific energies o and ¢ is identical, and therefore there
must be an analytical relationship between them. If we
knew the number of molecules N; composing the
surface layer of liquid surrounding the nucleus then,
knowing the size of the nucleus, we could easily find
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out the density of molecules in the layer: n, = N,/A4,,
wherefrom the required relationship would follow:

1)

0 = ny&.

Upon coming into a central collision, a drop of mass
mv, is deformed into a flat circular disk. With sufficient
excitation, this deformation may finish in the decom-
position of the disk into individual monomers {mol-
ecules)and comparatively few dimers and trimers. The
surplus of excitation energy appears as the kinetic
energy of these particles. In other words, there arises
a gaseous substance that is commonly termed vapor.
While expanded, the vapor forms an unstable lenticular
cavitation, but if it possesses critical energy, it will
form a stable spherical nucleus. By means of equation
(19) it is thus possible to obtain the surface area of the
nucleus:

A, = 4a(30" mv,/4n)*3. 22)

At critical excitation, the drop will be maximally
stretched into a monomolecular layer the surface of
which may be either flat or curved. If flat, the
nucleation will begin with a lenticular shape. This
means that in the surface layer of such a cavitation
there will be at least 2v, molecules, or more, which is
deduced from purely geometrical reasoning. If, how-
ever, the stretch surface is curved, this number will be
smaller. On this basis, the number of molecules in the
surface layer is given by the expression, N, = xv,,
where x 2 2. In this way, by means of n, = Ny/A, and
using equation (22), we get,

X = ng{36m/v )t )3,

(23

It follows from (21) that the density of molecules in
the surface layer, n, is determined by the physical
nature and thermodynamic condition of the fluid, con-
sidering that for each fluid there are definite depen-
dences, o(T) and &(T). Keeping equation (23) in mind,
it follows that the quantity x must also be a function
of the same parameters. The difficulty is in that the
function (T is known for some fluids, while the cor-
responding function &(T) is not. It is, however, possible
to assert a priori that ¢ = 0 for v = 1. Thus, as long as
v 2 1, we can take it that ¢” = 0 as well; consequently,
making use of (23), we obtain from equation (20):

1 ,
AT = (1 ——f)(36m7”2/mvc)"'3a — ). (24)
X

Namely, this equation is valid in the range of relatively
small temperatures only.

So far, we have seen that the parameter (x > 2}
depends on the kind of fluid and the temperature. An
additional conclusion is now derived from equation
(24), saying that the lower limit of x is given by the
expression: 1/x < F, where

F = 1—{Au/a}(36mc"* imy, )~ 173,

We are easily assured by a numerical check that
in the real domain F is slightly smaller than unity.
For water, indeed, x = 1.4..,4, within the range of
T =0422...055.

To be able to apply expression (24} to surface boil-
ing, we must remember that we are dealing here with
continual transfer of energy through a heating surface.
The difference between the heating surface temperature
and the mean temperature of the thin boundary layer
is given by the well-known relationship:

AT, = g/u

where ¢, thermal flux through the heating surface, and
a, heat-transfer coeffictent.

In this way, equation (24) is obtained in a form
adjusted to the parameters of surface boiling:

AT, = cq/a = 48366(t" > /mv ) {1 — 1/x)—Au. (25)

The thin boundary layer mentioned above may be
considered as a uniformly superheated zone in which
the nucleation and the initial growth of a bubble take
place, while the remaining part of the volume prac-
tically plays no role in this process. Consequently,
AT, is not dependent on whether the saturation or
subcooled boiling takes place, which is in agreement
with experimental evidence [10].

In addition, equation (25) shows that, under given
conditions, the thermal flux ¢ can be changed within
a wide range without any apparent effect on AT,
provided there is a simultaneous reciprocal change in
the coefficient «. This was also experimentally con-
firmed by Stefanovic [ 10].

The heating surface exerts a decisive influence on the
number of molecules N, which go to form the surface
layer of a nucleus. Namely, when colliding with the
heating surface, the cluster is stretched into a mono-
molecular layer which for a moment sticks to the heat-
ing surface due to adhesion. Just thereafter, owing to
some additional impulses from the heating surface, the
molecular layer disintegrates and the free molecules
form a semilenticular bubble. The size of the bubble
base, which is part of the heating surface, obviously
depends on the wetting angle. Furthermore, geometri-
cally speaking, it is evident that, when a cluster
collides with heating surface and for a given v, the
quantity x = N,/v. is minimal compared to all other
kinds of nucleation considered here. However, in
equation (25) for a minimum x the coefficient (1 — 1/x)
will be minimal. This easily accounts for the well-known
experimental fact about the great difference in the
degree of superheat between volume and surface boil-
ing. It is worth mentioning that until now this phenom-
enon has not been explained at all [ 10].

Likewise, the initial shape of the stretched molecular
layer may be considerably affected by impurity particles
contained in the liquid, and even by the microgeometry
of the heating surface, although definitely not in the
domain of crevice size where Bankoff [ 11] tried to find
an explanation for this effect. In this connection
Novakovié [12] has already asserted his doubt based
on the well known experiments of water boiling on the
mercury heating surface. Phenomenologically, the in-
fluence of the above factors is well known, but it is
only on the basis of the mechanism described here
that it becomes clear that attempts to interpret ana-
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lytically all possible influences on which metastable
superheat depends in real conditions are next to
hopeless.

Unlike the lenticular bubble, which easily yields to
external pressure and collapses, the spherical nucleus
may survive in the conditions of natural fluctuations
of liquid density. The moment that the nucleus comes
into being, the surrounding temperature T, may be
the same as, lower or higher than the nucleus tem-
perature, T;. If T; > T;, then under the action of free
surface vaporization, the nucleus begins to grow with-
out changing its spherical shape. The bubble growth
is a well studied phenomenon, especially when volume
boiling is meant. This growth will last as long as the
energy is transferred from the surroundings towards
the cavitation surface.

While the bubble’s diameter is increased, the strength
of the surface layer is gradually decreased, so that the
fluctuations and convective movement of liquid begin
to deform it more easily. Furthermore, the coalescence
of bubbles becomes more frequent as they come upon
each other.

The reduced limiting superheat, as given by equa-
tions (24) and (25) has been compared with the experi-
mental results [ 13-15] in the domain of their validity.
The agreement of the theory with the experiments is
almost perfect.

7. CONCLUSION

The proposed model of fluid enables us to acquire
a better understanding of liquid’s behaviour during the
process of vaporization. It also proves to be a useful
instrument for calculating the corresponding fluid
parameters with a fairly high accuracy.

The statement that the mass of a complex fluid
particle, a cluster, should not be considered as constant
but rather as dependent on the parameters of state,
seems to be fully justified. '
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CHANGEMENT DE PHASE D'UN FLUIDE CONSTITUE D’AGREGATS MOLECULAIRES

Résumé —Dans le présent aeticle I'existence d’agrégats moléculaires est supposée a priori. On montre que
la masse statistique moyenne d’un agrégat dépend des variables d’état du gaz, tandis que Iénergie
cinétique moyenne des agrégats est proportionnelle 4 la température mesurée et I'énergie cinétique
volumique proportionnelle a la pression mesurée.

Le concept de détection de la température et de la pression a été introduit et on a obtenu une
expression pour le facteur de détection en changement de phase. De plus, on a obtenu des expressions
pour la pression de saturation et pour le nombre moyen de molécules par agrégat en fonction de la
température de saturation.

Enfin, un modéle de vaporisation est proposé duquel on déduit une expression de la surchauffe limite
du liquide.

L’accord de ces expressions avec les résultats expérimentaux s’avere presque parfait.

DER PHASENWECHSEL EINES AUS MOLEKUL-CLUSTERN
ZUSAMMENGESETZT BETRACHTETEN FLUIDES

Zusammenfassung—In der vorliegenden Arbeit wird das Vorhandensein von Molekiil-Clustern a priori
angenommen; es wird gezeigt, daB die mittlere statistische Masse eines Clusters von den Gaszustands-
groBen abhingt, wihrend die mittlere kinetische Energie der Cluster proportional zur gemessenen
Temperatur und die auf die Volumeneinheit bezogene kinetische Energie proportional zum gemessenen
Druck ist. Es wurde das Konzept der Trennbarkeit von Temperatur und Druck eingefiihrt und ein
Ausdruck fiir den Phasenwechsel-Trennfaktor abgeleitet. Zusitzlich wurde ein Ausdruck fiir den
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Sattigungsdruck und die mittlere Molekiilzahl pro Cluster als Funktion der Sdttigungstemperatur

abgeleitet.  SchlieBlich wurde ein Verdampfungsmodell vorgeschlagen und eine Beziehung fir die

Grenziiberhitzung der Fliissigkeit hergeleitet. Die Ubercinstimmung all dieser Bezichungen mit den
experimentell ermittelten Werten ist nahezu volitkommen.

DA30BOE INTPEBPAILEHHUE TA3A, COCTOSWEIO U3 MOJIEKYJIAPHBIX KJTACTEPOB

Aunoraums — B CTaThe CYUIECTBOBAHHE MOJIEKYIAPHBIX KAACTEPOB MPHHUMACTCH a priori, 410
MIOKA3bIBAET, YTO CPEIHAN CTATHCTHYECKas MAcca OTHENBHOrO KAacTepa 3aBHCHT OT napamerpos
COCTOSIHMSA rasa, TOrAa KaK CPeNHsAA KMHETHYECKAsA JHEPrusa KAACTepOB MPOINOPLHOHAIbHA H3MEPEH-
HOH TeMriepaTtype, a KHHETHYECKast JHEPT s HA eAMHULY 00beMa — WU3MEPEHHOMY [3BNEHHIO ra3a.
BpejeHs! NOHATHA TEMIIEPATYPLI M JaBIEHHS M MOJYYEHO BbipaxeHWe ana kodhduiMenTa onpese-
ssemocTy da3oBoro npespawenus. Kpome Toro, nonyueHsl BoIPpaXeHHs UIS AAB/IEHUS HACHILIECHUA
M CPEeIHEro YMCia MOJEKY/T B KiacTepe Kak dyHKuui TeMnepatypsi HacoiueHus. Haxoued, npeaio-
*eHa Mozens napoobpaiosaHus ¥ TOAYHEHO BHIPAXEHHE JUIS NPEIENBHOTC NEPerpesa MHAKOCTH.
CornacHe Mosy4eHHbIX BbiPAXEHIH C IKCHEPUMEHTANBHBIMY JAHHBIMK OKA3AT0CH [TOYTH HACATBHbIM.



